Adsorption of charged macromolecules at a gold electrode.

نویسندگان

  • J Mieke Kleijn
  • Desiree Barten
  • Martien A Cohen Stuart
چکیده

Using an optical reflectometer with impinging-jet system, the adsorption from aqueous solution onto gold of three charged macromolecules has been studied: the strong linear-chain polyelectrolyte polyvinyl pyridine (PVP(+)), the fifth-generation poly(propylene imine) dendrimer DAB-64, which has a pH-dependent charge and a relatively fixed shape, and the protein lysozyme, of which both the charge and the structure-stability are dependent on solution composition. Experimental conditions that have been varied include the adsorbate concentration, electrolyte concentration, pH, and externally applied potential across the gold/solution interface. Making use of the earlier established dependency of the double layer potential of the gold substrate on solution conditions and externally applied potential, the results of measurements as a function of pH and as a function of external potential control are compared. The total set of results enables us to draw conclusions with respect to the relative importance of electrostatic interactions for the adsorption process. PVP(+) adsorption follows the electric potential of the gold/solution interface and is further determined by a rather strong nonelectrostatic affinity between segments and surface. The adsorption behavior of DAB-64 is not quite understood, but electrostatic interactions with the gold surface seem to play a minor role. For lysozyme, surface-induced conformational changes dominate the adsorption process. The extent of spreading of the molecules decreases with increasing polarity of the surface, resulting in a minimum in adsorbed amount around the point of zero potential of the gold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsorption of charged macromolecules on mixed fluid membranes

The adsorption of charge rigid macromolecules, such as proteins from solution, on mixed (charged and neutral) lipid membranes is affected by several important factors. First, the mobile lipids in the membrane may rearrange, and demix locally to match the charge density of the apposed macromolecule, thus lowering the adsorption free energy. On the other hand, the (electrostatic) interaction betw...

متن کامل

Electrically controlled DNA adhesion.

The ability to control the interaction of polyelectrolytes, such as DNA or proteins, with charged surfaces is of pivotal importance for a multitude of biotechnological applications. Previously, we measured the desorption forces of single polymers on charged surfaces using an atomic force microscope. Here, we show that the adhesion of DNA on gold electrodes modified with self-assembled monolayer...

متن کامل

Reactivity of nanocolloidal particles gamma-Fe2O3 at charged interfaces. Part 2. Electrochemical conversion. Role of the electrode material.

In this paper we are interested in the reactivity of magnetic nanoparticles at the electrode involved in the electrochemical synthesis of magnetic and conductive liquids. The reactivity of charged colloidal particles occurs in two steps, first the approach toward the electrode with a possible adsorption phenomenon and secondly the electron transfer. In this paper we focus on the electrochemical...

متن کامل

Reactivity of nanocolloidal particles -Fe2O3 at charged interfaces Part 2. Electrochemical conversion. Role of the electrode material

We are interested here in the reactivity of magnetic nanoparticles at the electrode involved in the electrochemical synthesis of magnetic and conductive liquids. The reactivity of charged colloidal 10 particles occurs in two steps, first the approach toward the electrode with a possible adsorption phenomenon and secondly the electron transfer. In this paper we focus on the electrochemical behav...

متن کامل

Flexible charged macromolecules on mixed fluid lipid membranes: theory and Monte Carlo simulations.

Fluid membranes containing charged lipids enhance binding of oppositely charged proteins by mobilizing these lipids into the interaction zone, overcoming the concomitant entropic losses due to lipid segregation and lower conformational freedom upon macromolecule adsorption. We study this energetic-entropic interplay using Monte Carlo simulations and theory. Our model system consists of a flexib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 20 22  شماره 

صفحات  -

تاریخ انتشار 2004